

V&V o

 Martin
 Jet Propulsio
 California Instit
 4800 Oak
 Pasadena, C
 +1 818
 Martin.S.Feath

ABSTRACT
We have introduced an
automation during the verif
(V&V) of a spacecraft's
This paper describes the p
solution we employed, and
our approach in a general V

PROBLEM
Cost, performance and func
driving a trend towards u
autonomous systems in
controlled mechanisms. Ou
verification and validat
spacecraft's autonomous p
generates the sequences of
that control the spacecraft.
a self-sufficient autonomo
operate a spacecraft over
without human intervention
V&V of the planner is cruci

The planner can exhibit a
behaviors than the c
mechanisms of more t
designs. Furthermore, it mu
a wide range of circumsta
raise some new challenges f

As for any complex piece
focus of V&V revolves aro
The new V&V challenges
during testing as the follo
characteristics:
NASA Goddard Software Engineering Workshop, 1998.
f a Spacecraft's Autonomous Planner
through Extended Automation

S. Feather Ben Smith
n Laboratory, Jet Propulsion Laboratory,

ute of Technology California Institute of Technology
Grove Drive 4800 Oak Grove Drive
A 91109, USA Pasadena, CA 91109, USA
354 1194 +1 818 353 5371
er@Jpl.Nasa.Gov Ben.D.Smith@Jpl.Nasa.Gov

d used significant
ication and validation
autonomous planner.
roblem we faced, the
 the applicability of

&V setting.

tionality concerns are
se of self-sufficient
place of human-

r focus has been the
ion (V&V) of a
lanner. This planner
high-level commands
The planner is part of
us system that will
an extended period,
 or oversight. Hence,
al.

much wider range of
ommand sequence

raditional spacecraft
st respond correctly to
nces. Together, these
or V&V.

of software, a major
und thorough testing.
 manifest themselves
wing combination of

• The planner's output (plans) are detailed and
voluminous, ranging from 1,000 to 5,000
lines long. Plans are intended to be read by
software, and are not designed for easy
perusal by humans. To illustrate this, a small
fragment of a plan is shown in Figure 1.

• Each plan must satisfy all of the flight rules
that characterize correct operation of the
spacecraft. Flight rules may refer to the state
of the spacecraft and the activities it
performs, and describe temporal conditions
required among those states and activities.
Flight rules are expressed in a special-purpose
language; an example is shown in Figure 2.
There are over 200 such flight rules of
relevance to the planner.

• The information pertinent to deciding
whether or not a plan passes a flight rule is
dispersed throughout the plan.

• The thorough testing of the planner yields
thousands of such plans, spanning the wide
range of circumstances in which the planner
is expected to operate.

As a consequence, manual inspection of more
than a small fragment of plans generated in the
course of testing is impractical.

SOLUTION
Our approach has been to automate the checking
of plans. The automated system checks each plan
for adherence to all of the flight rules input to the
planner. This verifies that the planner is not

 2

generating hazardous command sequences. The
automated system also performs some validation
checks. These arise from a gap between the
"natural" form of a flight rule, and the way in
which it must be re-encoded so as to be expressed
to the planner. The automated system checks a
direct encoding of the "natural" statement of the
flight rule, thus helping validate that the planner
and its inputs are accomplishing the desired
behavior.

We use a database as the underlying reasoning
engine of our system to automatically check
plans. To perform a series of checks of a plan, we
automatically load the plan as data into the
database, having previously created a database
schema for the kinds of information held in plans.

We express the flight rules as database queries.
The database query evaluator is used to
automatically evaluate those queries against the
data. Query results are organized into those that
correspond to passing a test, which we report as
confirmations, and those that correspond to
failing a test, which we report as anomalies.

 Figure 1 – Small fragment of a plan

(#S(C-TOKEN
 :CARDINALITY :SINGLE :NAME VAL-920
 :SV-SPEC (SPACECRAFT_ATTITUDE SPACECRAFT_ATTITUDE_SV)
 :TYPE-SPEC ((CONSTANT_POINTING_ON_SUN
 (HGA_AT_EARTH BBC_DEADBAND_CRUISE)))
 :START-B-TOKEN VAL-920
 :END-B-TOKEN VAL-920
 :STATE-VARIABLE (SPACECRAFT_ATTITUDE SPACECRAFT_ATTITUDE_SV)
 :TOKEN-TYPE ((CONSTANT_POINTING_ON_SUN
 (HGA_AT_EARTH BBC_DEADBAND_CRUISE)))
 :DURATION (37801 500000000)
 :START-TIME-POINT TP-1279
 :END-TIME-POINT TP-1116

 Figure 2 – Example flight rule

Every interval of SEP_Thrusting whose 4th parameter = FIRST is "contained_by" an
interval of Sun_Pointing with the same 1st parameter as the 1st parameter of the
thrusting interval, and with 2nd parameter = BBC_DEADBAND_IPS_TVC

(Define_Compatibility
 (SINGLE ((SEP SEP_SV))
 ((SEP_Thrusting (?heading ?level ?duration FIRST))))
 :compatibility_spec
 (contained_by
 (SINGLE ((Spacecraft_Attitude Spacecraft_Attitude_SV))
 ((Sun_Pointing (?heading BBC_DEADBAND_IPS_TVC))))

The net result is that we can quickly and
thoroughly check each plan. The automated
checking code takes less than five minutes (on a
Sun ULTRA Sparc) to perform each of several
hundred checks of a large (5,000 line) plan and
generate a report of the results. Plan generation is
a search-intensive activity, and a planner is a
complex piece of software precisely because of
the need to perform this search in an effective

and efficient manner.
Conversely, once a plan has
been generated, checking
properties of that plan is
relatively straightforward.

Because the flight rules
themselves are numerous
and detailed, and evolve
over the course of software
development, we have taken
the automation one step
further. We generate the
verification part of the plan-
checking code from the
flight rules themselves, in
the same form in which they
are input to the planner.
Using this capability, we are
able to automatically regenerate the flight-rule
checking code, whenever the set of flight rules
input to the planner evolves. The architecture of
this system is shown in Figure 3.

 3

The pieces we had to build were:

• The database schema to hold plan
information.

• Code to automatically load a plan (in the form
output by the planner) into the database.

• Code to automatically generate a report from
running the database queries. A report
contains more than simply a pass/fail result
for the plan as a whole. For example:

• Flight rules that are satisfied trivially are
reported as such (e.g., the flight rule
shown in Figure 2 would be trivially
satisfied if the plan contained no intervals
of SEP_Thrusting).

• Flight rules that are satisfied by finding
corresponding activities in the plan are
reported as such (e.g., the flight rule
shown in Figure 2 would be satisfied by
finding a Sun_Pointing interval in the
plan corresponding to an SEP_Thrusting
interval in the plan). All such pairs of

corresponding intervals are reported.

PLAN

DATABASE

activities of plan
& their rationale

data

Automatic
loading of
database

database queries

Flight Rules

Automatic
translation

Database schema

Query results (confirmations with
justifications or anomalies)

Automatic analysis

PLANNER
Goals & initial
conditions

 Figure 3 - Architecture for verification of plans

Manually created

 Planner inputs
and outputs

This kind of information is useful to the
planning team in assessing test coverage.

• Code to automatically translate flight rules (in
the form input to the planner) into database
queries.

METRICS
The checker tool has been used during of the
testing of the spacecraft's autonomous planner.

• It is applied to check every flight rule input to
the planner. There over 200 such rules.

• It is applied to the plans generated during
testing. To date, there have been thousands of
such plans.

• The checker runs somewhat faster than the
planner; the time to check a plan typically
ranges from 30 seconds to 4 minutes, while
the time to generate a plan typically ranges
from 3 minutes to 10 minutes.

• When there is a change to the flight rules, we
automatically regenerate the checker's
database queries. This takes less than 10
minutes for the entire set of flight rules.
Complete regeneration, in response to flight
rule changes, has been performed 3 times.

 4

• The development of the checker was a
significantly lesser effort than the
development of the planner. The former took
several months, the latter several years.

• The checker was modified to accommodate a
modest change to the plan syntax. This took
less than 3 days to accomplish. A small
change to the syntax of the flight rules was
accommodated in less than one hour.

APPLICABILITY
Our approach has been developed for, and
applied to, V&V of a spacecraft's autonomous
planner. However, we believe the approach has
much wider applicability than this one project.
The characteristics that identify when this
approach is worthwhile and viable are as follows:

Worthwhile: The development of automated test
checking code, rather than relying upon manually
conducted checks, is warranted when:

• There are voluminous amounts of data to
check, either because each test run yields lots
of data, or there are numerous test runs, or
both.

• The checking of a test run is complex, either
because there are many checks to perform, or
the checks themselves are hard to perform, or
both.

These conditions render manual checking
unsatisfactory.

A further applicability condition is that it is
infeasible to analyze the code itself in place of
testing the code. For our task, the planner was a
complex piece of software, and seemed beyond
the capabilities of present-day analysis
techniques (such as model checking or theorem
proving). This rendered thorough testing, and
therefore thorough checking of the test results,
inevitable.

Viable: The style of automated checking we
developed requires the following conditions to
hold:

• The data to check is self-contained. That is,

there is no need for human interaction to
determine whether or not a check has been
met. (In our planner task, each plan is a self-
contained object from which it can be
determined whether or not each flight rule
holds.)

• The data to check is in a machine-
manipulable form. That is, it is feasible to
develop automated checking that will work
directly off the form of data available,
without human intervention. (In our planner
task, plans have exactly this characteristic,
since they are intended for consumption by
the spacecraft's automatic executive.)

• Checking is easier than generation. That is,
the code to check that a test run satisfies the
desired conditions is simpler than the code
that generates that test data.

This has two positive consequences:

1. The development of the automated test
checking code will be a much lesser effort
than the development of the system under
test.

2. The test checking code will run faster
than the system under test (meaning it can
easily keep up with the test data
generated, and provide quick feedback to
the test personnel).

Our automatic generation of flight-rule checking
code reflects the same characteristics of an
activity that is worthwhile and viable to
automate:

• we have hundreds of flight rules to check

• individual rules can be quite complex

• the set of rules evolves over time

• flight rules are expressed in a machine-
manipulable format (constraints input to the
planner)

• the language of those rules (planner constraint
language) is carefully proscribed so as to
render plan generation feasible; the

ex
em
lan

In ou
check
compl

FURT
Our p
charac

The v
plan
contai
justifi
justifi
rules t
activit
the pr
redun
two v

• th
ar
ch
ar
th
do
th
co
ra

activitiesGoals & initial
Manual
 5

pression of those rules as checks can
ploy an extensible, general purpose
guage.

r system, generation of the flight-rule
ing code takes under 10 minutes and is
etely automatic.

HER OBSERVATIONS
roblem and solution exhibit two further
teristics of general importance.

alue of redundancy and rationale: Each
generated by the spacecraft's planner
ns both a sequence of activities, and
cations for those activities. These
cations relate each activity to the flight
hat were taken into account in planning that
y. Viewed solely as a command sequence,
esence of these justifications in the plan is
dant. However, these justifications serve
ery useful roles for V&V purposes:

ey provide rationale for why the planner
rived at a plan. This rationale can be
ecked to ensure that the planner is not only
riving at the "right" solution (namely, a plan
at adheres to all the flight rules), but is
ing so for the "right" reasons. This gives
e test team confidence to extrapolate the
rrect operation of the planner to a wide
nge of circumstances.

• they provide redundancy that contributes to
our confidence in the checking code itself.
Our test checking code independently
performs the following three kinds of checks:

PLAN

DATABASE

of plan

data

Automatic
loading of
database

Flight rule
pieces

Manual
expression

Database schema

Query results

 Automatic analysis

PLANNERconditions

Figure 4 – Extension to the architecture to do validation

decomposition
and expression

Conceptual
flight rule
(natural
language)

Database query

Automatic translation

Database queries

1. that the activities of the plan adhere to all
the flight rules,

2. that there is a justification recorded with
each activity in the plan for every flight
rule that the checker finds is applicable to
that activity, and

3. that every justification recorded in the
plan can be traced back to a flight rule.

This makes it unlikely that the checking code
has a "blind spot" that happens to overlook a
fault in a plan.

The automated test checking code we
automatically generate from planner flight rules
checks this rationale.

Opportunities for validation: Verification was
the original focus of our plan checker generation
effort. By thorough checking of the planner's
outputs (plans) against the flight rules given as
input to the planner, we gained confidence that
the internal operation of planner was correct.
However, the effort also yielded significant
opportunities for validation.

Validation opportunities arose from a gap
between the most "natural" statement of a flight

 6

rule, and the form in which it must be re-encoded
so as to be expressed to the planner. The planner
constraint language is carefully proscribed so as
to render plan generation feasible. On occasion,
a flight rule cannot be expressed directly in this
limited language. Instead, it must be (manually)
subdivided into several separate rules that in
conjunction will achieve the requisite condition,
and that individually can be expressed in the
constraint language. Our language for expressing
checks is more general purpose than the planner
constraint language. This means that it is possible
to (manually) encode an automatic check
corresponding directly to the original flight rule.
By following this process, we are able to validate
that the planner, and the encodings of flight rules
given to it, do in fact achieve the original intent.

Note that there is a manual step to this validation
- we must manually encode the original flight
rules (expressed in natural language) as checking
code. The checking code then runs automatically.
However this manual step can take advantage of
the framework established by the verification
architecture and code.

In more general terms, we see that verification
can be extended into the realm of validation when
the verification language is more general than the
language of the system being verified.

CONCLUSIONS
Testing activities are an area ripe for insertion of
automation. Our work automates the
determination of whether a test run has met its
requirements. Furthermore, we automate the
generation of the code performing these
determinations. We were motivated in part by
early work in this direction, reported in [1].

We employ a database at the heart of our
checking tool. Our earlier pilot studies had shown

a database could be used to provide rapid and
flexible analysis [2].

Checking test runs is only a part of testing. For
example, selecting which tests to run is an
important decision. Other than providing some
feedback on which requirements a test run has
exercised, the work reported here does not
address test selection. For a broader perspective
on the testing of autonomous spacecraft software,
see [3].

ACKNOWLEDGMENTS
The research and development described in this
paper was carried out by the Jet Propulsion
Laboratory, California Institute of Technology,
under a contract with the National Aeronautics
and Space administration. Funding was provided
under NASA's Code Q Software Program Center
Initiative UPN #323-098-5b, and by the
Autonomy Technology Program.

REFERENCES
[1] D.J. Richardson, S.L. Aha & T. O'Malley,
"Specification-based Test Oracles for Reactive
Systems," Proceedings of the 14th International
Conference on Software Engineering, pp. 105-
118, Melbourne, Australia, 1992.

 [2] M.S. Feather, "Rapid Application of
Lightweight Formal Methods for Consistency
Analysis," IEEE Transactions on Software
Engineering, vol, 24, no. 11, pp. 949-959, Nov.
1998.

 [3] B. Smith, B. Millar, J. Dunphy, Y. Tung, P.
Nayak, E. Gamble & M. Clark, "Validation and
Verification of the Remote Agent for Spacecraft
Autonomy," to appear in Proceedings, 1999
IEEE Aerospace Conference.

